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Abstract. The covariant path integral quantization of the theory of the scalar and spinor fields
interacting through the Abelian and non-Abelian Chern–Simons gauge fields in 2+1 dimensions
is carried out using the De Witt–Fadeev–Popov method. The mathematical ill-definiteness of the
path integral of theories with pure Chern–Simons’ fields is remedied by the introduction of the
Maxwell or Maxwell-type (in the non-Abelian case) terms, which make the resulting theories
super-renormalizable and guarantees their gauge-invariant regularization and renormalization.
The generating functionals are constructed and shown to be the same as those of quantum
electrodynamics (quantum chromodynamics) in 2+ 1 dimensions with the substitution of the
Chern–Simons propagator for the photon (gluon) propagator. By constructing the propagator in
the general case, the existence of two limits; pure Chern–Simons and quantum electrodynamics
(quantum chromodynamics) after renormalization is demonstrated.

The Batalin–Fradkin–Vilkovisky method is invoked to quantize the theory of spinor non-
Abelian fields interacting via the pure Chern–Simons gauge field and the equivalence of the
resulting generating functional to the one given by the De Witt–Fadeev–Popov method is
demonstrated.

The S-matrix operator is constructed, and starting from thisS-matrix operator novel
topological unitarity identities are derived that demand the vanishing of the gauge-invariant
sum of the imaginary parts of the Feynman diagrams with a given number of intermediate on-
shell topological photon lines in each order of perturbation theory. These identities are illustrated
by explicit examples.

1. Introduction

The past 15 years witnessed an increasing interest in the theories of matter coupled Chern–
Simons (CS) gauge field theories in 2+1 dimensions. From one point of view, the Euclidean
version of such theories can be viewed as giving the high temperature bahaviour of 3+ 1
dimensional models [1]. On the other hand, in the pioneering works [2, 3] it has been
shown that the introduction of the (P and T odd) CS term into the Lagrangian of 2+ 1
dimensional quantum electrodynamics (QED) and quantum chromodynamics (QCD), leads
to a very peculiar property: the gauge field splits into two parts; a massive part (that acquires
a mass in a gauge-invariant manner), and a massless part which does not contribute to the
free classical Hamiltonian, but leads to an additional interaction among the particles. This
interaction also appears in pure CS theories [4].
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In the work [3], it was argued that in the non-Abelian version of CS theories, the
dimensionless combination of the charge and the stochastic parameter should be quantized.
It was also shown that the mass term provides an infrared cut-off in special covariant gauges
that renders the theory superrenormalizable.

Many works were devoted to the consideration of the one-loop radiative corrections to
the charge and the stochastic parameter in both the Abelian [5] and the non-Abelian [6]
theories, and a theorem [7] was set which states that under very general conditions, there
are no further radiative corrections beyond the finite one-loop for these parameters.

An additional thrust into the interest in CS theories was provided by the interesting
results in the non-relativistic domain; essentially the idea of Wilczeck that non-relativistic
charged particles coupled to pure CS fields can be considered as a phenomenological
approach for the description of the ‘bound states’ of two particles called anyons [8]. This
idea found wide acceptance, and many attempts to apply it in many interesting condensed
matter phenomena, such as the fractional quantum Hall effect, and high-temperature
superconductivity were made (see the reviews [9] and the references therein). CS theories
also found applications in the field-theoretic formulation of the Aharonov–Bohm effect
[10, 11].

One of the issues that received considerable interest during the past period was the
canonical quantization of the CS models [2, 3, 12]. However, some interesting points such as
the canonical quantization in a Lorentz covariant gauge still need further investigation. Path
integral quantization was also considered first—to our knowledge—in the works [11, 13]
where the generating functional was also constructed.

Another issue that did not receive much attention is the following. The free transverse
topological photons of the pure CS theory are absent, while the gauge-field propagator is
present, and significantly contributes to the interaction among the particles. This issue was
addressed in the work [14], and the so-called topological unitarity identities were derived.
We elaborate on this issue in the present work.

This paper is a further development of the series of works [11, 13, 14]. The main aims
are, to carry out the path integral quantization and construct the generating functional for a
wide class of models involving both the Abelian and the non-Abelian CS fields (section 2),
to construct theS-matrix operator, and to develop the Feynman rules and formulate a Wick-
type theorem for the CS field (section 3), and to illustrate in detail the topological unitarity
identities in general, and through a specific example (section 4). Section 5 is devoted to
concluding remarks.

At this point, we would like to define some terms and abbreviations that we are going
to use frequently later. By Chern–Simons quantum electrodynamics (CSQED), we mean
QED with both the CS and the Maxwell terms present in the action. When only the CS
term is present in the action, we refer to this as pure CSQED. In the non-Abelian case, we
use CSQCD and pure CSQCD to refer to the theories with and without the Maxwell-type
term, respectively.

2. Path integral quantization and the generating functional

The aim of this part is to develop the path integral quantization, and to construct the
generating functional of the theory of scalar and spinor fields interacting through the Abelian
and non-Abelian CS field in 2+ 1 dimensions. This can be done through two different
approaches: The De Witt–Fadeev–Popov (DFP) [15] approach, or the Batalin–Fradkin–
Vilkovisky (BFV) approach [16]. The latter was developed to quantize gauge theories
with both classes of constraints and with arbitrary constraint algebra. In our case both
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approaches lead to the same result. This is a consequence of the fact that the first-class
constraints, both in the Abelian and non-Abelian cases, form a closed algebra, and that the
structure functions in the algebra of the first-class constraints are just constants, as will be
demonstrated later. Therefore, we shall carry out the path integral quantization through the
simpler DFP approach, and will prove the equivalence of both approaches by invoking the
latter in the quantization of the theory of spinors interacting through the non-Abelian CS
gauge field. This proof is very helpful in understanding the connection between the usual
canonical quantization and the BFV quantization schemes, and in the demonstration of the
appearance of the BRST operators of the theory.

2.1. The De Witt–Fadeev–Popov method

2.1.1. The scalar CSQED.We begin with the theory of charged scalar particles interacting
through a gauge field whose action is given by both the Abelian CS and the Maxwell terms.
Following the DFP method, we get for the generating functional in the covariantα-gauge
the expression [11, 13]:

Z[Jµ, j, j
∗] = Z−1

0

∫
DAµ(x)dϕ

∗ (x)Dϕ(x) exp

{
iSCS + iSg + iSm + iSM

+i
∫

d3x (Jµ(x)A
µ(x)+ j ∗(x)ϕ(x)+ j (x)ϕ∗(x))

}
(1)

where

Z0 = Z(0, 0, 0, ) (2)

SCS = µ

2

∫
d3x εµνλA

µ(x)∂νAλ(x) (3)

Sg = −1

2α

∫
(∂µA

µ)2 d3x (4)

Sm =
∫

d3x (ϕ∗(x)(DµD
µ −m2)ϕ(x)− λ(ϕ∗(x)ϕ(x))2) (5)

SM = −1

4γ

∫
d3x Fµν(x)F

µν(x). (6)

Here, Jµ(x), j (x) and j ∗(x) are external sources,e andm are, respectively, the charge
and the mass of the scalar field, andDµ = (∂µ − ieAµ). The metric is taken as
gµν = diag(1,−1,−1).

The introduction of the Maxwell term (equation (6)) into the action of the theory
guarantees the convergence of the path integral. This is because the latter is mathematically
ill-defined when only the CS term is present in the action, since this term is not positive
definite in Euclidean space. The Maxwell term is the only gauge-invariant bilinear term in
Aµ that guarantees gauge-invariant regularization and renormalization of the theory. This
term not only leads to the convergence of the functional integral overAµ, but also plays
the role of a regularization factor since the resulting theory becomes super-renormalizable
[2, 3]. The pure CS theory can be recovered by taking the limitγ →∞ as will be shown
below.

The Green functions of the theory are defined as usual by varying the above generating
functional, equation (1), with respect to the sources. For example, the free propagator of
the CS field is defined as

Dµν(x − x ′) = (−i)2
δ2

δJµ(x)Jν(x ′)
Z[Jµ, j, j

∗] |Jµ=j=j∗=e=0 . (7)
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Before proceeding further, it is necessary here to make some remarks on the dimensions of
the parameters and the fields of the theory. We have some arbitrariness in the choice of the
dimensions of the statistical parameterµ, the chargee and the factorγ in equations (3),
(5) and (6). However, if we require the 2+ 1 dimensional matter-coupled CS theory to
have some relation with the real world, so that it arises after compactification on the∼ 1

γ

layer of QED in 3+1 dimensions [17] with the parity violating termµ4
∫
FµνF̃

µν d4x where
F̃ µν = 1

2ε
µνλσFλσ then the chargee and the parameterµ are to be chosen dimensionless,

whereas [Aµ] = x−1, [ϕ] = x
−1
2 and [γ ] = x−1. In the following, we will adopt this

convention of the dimensions†.
The generating functional, equation (1), can be formally rewritten in the alternative form

Z[Jµ, j
∗, j ] = Z−1

0

∫
Dϕ∗(x)Dϕ(x) exp

(
ie2
∫

d3x
δ2

δJµ(x)δJµ(x)

)
×
∫
DAµ(x) exp

{
i(SCS + SM + Sg + S̃m)

+i
∫

d3x (Jµ(x)A
µ(x)+ j ∗(x)ϕ(x)+ ϕ∗(x)j (x))

}
(8)

whereS̃m does not contain the terme2AµA
µ in equation (5), i.e.

S̃m = −
∫

d3x (ieAµ(x)(ϕ
∗(x)∂µϕ(x)− ϕ(x)∂µϕ∗(x))+ λ(ϕ∗(x)ϕ(x))2). (9)

After integrating overAµ in equation (8) we obtain:

Z[Jµ, j, j
∗] = Z−1

0

∫
Dϕ∗(x)Dϕ(x) exp

{
ie2
∫

d3x ϕ∗(x)ϕ(x)
δ2

δJν(x)δJ ν(x)

}
× exp

{
i

2

∫
d3x d3y Iµ(x)D

µν(x − y)Iν(y)− λ
∫

d3x (ϕ∗(x)ϕ(x))2

+i
∫

d3x (j ∗(x)ϕ(x)+ j (x)ϕ∗(x))
}

(10)

where

Iµ(x) = Jµ(x)+ ie
∫

d3x (ϕ∗(x)∂µϕ(x)− ϕ(x)∂µϕ∗(x)) (11)

and Dµν(x − y) is the CS gauge field’s Green function (or propagator) defined by the
equation: ∫

d3x ′
δ2(SCS + Sg + SM)
δAµ(x)δAλ(x ′)

Dλν(x ′ − y) = gνµδ3(x − y) (12)

or, [
1

γ
(�xgµλ − ∂µ∂λ)+ 1

α
∂µ∂λ + µεµλρ∂ρx

]
Dλν(x − y) = δ3(x − y)gνµ. (13)

The solution of equation (13) is [2, 3]:

Dλν(x) = 1

(2π)3

∫
d3p eipx

[
−γ

(gλν − pνpλ
p2 )

(p2− γ 2µ2+ iε)

+ iελνρpρ

µ(p2− γ 2µ2+ iε)
− iελνρpρ

µ(p2+ iε)
− αpλpν

(p2+ iε)2

]
. (14)

† If one makes the change of variablesAµ → A′µ = Aµ√
γ

, e → e′ = e
√
γ , µ → µ′ = µ

γ
then one gets the

conventions used in the works [2, 3].
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We note that the above Green function consists of two parts. The first two terms describe
the propagation of a real massive photon with mass equal toγµ; the third term describes
the propagation of a topological massless photon, and the last term is pure gauge term.
The appearence of massive photons in a gauge-invariant manner is a well known peculiar
property of CS theory, and is independent of coupling to matter fields [2, 3]. To show that
the topological term in equation (14) does not contribute to the tensorFµν of the gauge
field, we construct the general solution of the classical equations of motion of the fieldAµ
(equation (13)). This is given as:

Aµ(x) = 4π
∫

ImDµν(p)e
ν
δ a

δ(p)eikx d3p

= 1

2π

∫
d3p eipx

[
−γ

((
eδµ(p)−

pµpν

p2
eνδ (p)

)
+ i

γµ
εµνρp

ρeνδ (p)

)
×δ(p2− µ2γ 2)− i

µ
εµνρe

ν
δ (p)p

ρδ(p2)−
(

pµpν

p2− µ2γ 2

)
eνδ (p)δ(p

2)

+α
2
pµ

(
∂

∂pν
δ(p2)

)
eνδ (p)

]
aδ(p). (15)

Here, ImDµν(p) is the imaginary part of the propagatorDµν in equation (14) in
the momentum space representation;eνδ (p), δ = 0, 1, 2, are three mutually orthogonal
polarization vectors which satisfypµe

µ
δ (p) = 0. This choice corresponds to the gauge

∂µA
µ = 0. In the general case, the free solutionAµ(x) in equation (15) represents the

sum of two independent parts. The terms proportional toδ(p2 − µ2γ 2) correspond to a
real massive photon which contributes to the free Hamiltonian; the fourth and fifth terms
are the topological parts of the gauge field which do not contribute to the classical free
Hamiltonian, but give non-trivial contribution to the propagator (see equation (14)), and the
last term is merely a gauge term that can be removed by a gauge transformation. It is easy
to see that the topological part ofAµ does not contribute toFµν :

Fµν = ∂µAν − ∂νAµ
= 1

2πµ

∫
d3p eipxδ(p2)aδ(p)(pµενλρ − pνεµλρ)eλδ pρ (16)

multiplying both sides byεσµν we get

εσµνFµν = 1

µπ

∫
d3p eipxδ(p2)aδ(p)(eσδ (p)p

2− pµeµδ pσ ) = 0 (17)

since

pµe
µ
α = 0. (18)

As for the the massive part of the solution (15), excluding the second term in this equation
in view of (18) above, then we have for the massive part

Aµ(x) = −1

2π

∫
d3p eipxγ

(
eδµ(p)−

i

µγ
εµνρp

ρeνδ

)
aδ(p)δ(p

2− µ2γ 2) (19)

and this gives a non-vanishing contribution toFµν . We shall return later to the question of
quantization of thisAµ in connection with the construction of theS-matrix of the theory
(see section 3).

Returning to the general expression for the Green function of the gauge field, we stress
that formally it is possible to consider two limiting procedures in equation (14). First, if
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γ →∞ we obtain:

lim
γ→∞Dλν = DCS

λν =
−1

(2π)3

∫
d3p eipx

(
iενλρpρ

µ(p2+ iε)
+ αpλpν

(p2+ iε)2

)
(20)

which is just the propagator of the pure CS theory. In the limitµ→ 0, we get the usual
Feynman propagator in 2+ 1 dimensional QED for massless photons:

lim
µ→0

Dλν(x) = DM
λν(x) =

−γ
(2π)3

∫
d3p eipx

(
gλν − ( pλpνp2+iε )(1− α

γ
)
)

(p2+ iε)
. (21)

In both cases, we have from equation (15)Aµ as

lim
γ→∞Aµ(x) = −1

2π

∫
d3p eipx

[(
i

µ
εµνρp

ρ − α
2
pµ

∂

∂pν

)
δ(p2)

]
eνδ (p)a

δ(p)

= ACSµ (22)

and

lim
µ→0

Aµ(x) = −γ
2π

∫
d3p eipx

[(
gµν +

(1− α
γ
)

2
pµ

∂

∂pν

)
δ(p2)

]
eνδ (p)a

δ(p). (23)

Strictly speaking, the above limits are to be taken after renormalization. The parameterµ

is known to receive finite renormalization at one-loop order [2], and the limitµ → ∞ at
this order exists. Since it is well known that there are no further corrections from higher
orders [5–7] for this parameter, then this limit exists to all orders in perturbation theory.
The limit γ →∞, has recently been shown to exist up to two-loop order by Tanet al [23],
who calculated the effective potential of the CS scalar electrodynamics with a symmetry-
breaking term up to two-loop order, and showed that the limitγ →∞ exists, at which one
recovers the pure CS theory.

2.1.2. The spinor CSQED.Let us now consider spinor CSQED. The DFP method gives
the following expression for the generating functional in this case [14]:

Z[Jµ, η, η̄] = Z−1
0

∫
DAµ(x)Dψ̄(x)Dψ(x) exp

{
iSCS + iSM + iSg + iSψ

+i
∫

d3x (Jµ(x)A
µ(x)+ η̄(x)ψ(x)+ ψ̄(x)η(x))

}
(24)

whereZ0 = Z(0, 0, 0); SCS , Sg andSM are defined by equations (3), (4) and (6) respectively,
and

Sψ =
∫

d3x ψ̄(x)(iD/−m)ψ(x) (25)

where

D/ = Dµγ
µ Dµ = (∂µ − ieAµ) (26)

and the Dirac matrices are defined as

γ0 = σ3 γi = iσi i = 1, 2 (27)

whereσ ’s are the Pauli spin matrices. Theγ -matrices satisfy

{γµ, γν} = 2gµν γµγν = gµν − iεµνλγ
λ (28)
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ψ(x) and ψ̄(x) = ψ(x)†γ0 are the two-component Grassmann spinors,η and η̄ are
Grassmann sources. Integrating overAµ(x) in equation (24) we obtain:

Z[Jµ, η̄, η] = Z−1
0

∫
Dψ̄(x)Dψ(x) exp

{
i

2

∫
d3x d3y Ĩµ(x)D

µν(x − y)Ĩν(y)

+i
∫

d3x (η̄(x)ψ(x)+ ψ̄(x)η(x))
}

(29)

where

Ĩµ(x) = Jµ(x)+ eψ̄(x)γµψ(x) (30)

and Dµν(x − y) is the bare CS field propagator which is the same as in the scalar
case, equation (14). Here also, as in the scalar case, one can consider the limits (after
renormalization)γ → ∞ andµ → 0 to get the propagators of pure CS field and 2+ 1
dimensional QED respectively. Moreover, the generating functionals equations (10) and
(29) are, respectively, identical to those of scalar and spinor QED in 2+1 dimensions with
the substitution of the photon propagator for the CS propagator.

2.1.3. The non-abelian CS gluodynamics.The path integral quantization of theories with
the non-Abelian CS gauge field is a bit more complicated than the Abelian one, so we
consider it in some more detail. We start with the theory of the gauge field without coupling
to matter, i.e. CS gluodynamics, defined by the Lagrangian

L = LM + LCS (31)

LM is the usual Yang–Mills Lagrangian in 2+ 1 dimensions,

LM = −1

2γ
tr(Fµν(x)F

µν(x))

Fµν = ∂µAν(x)− ∂νAµ(x)+ g[Aµ(x), Aν(x)].
(32)

LCS is the non-Abelian CS term

LCS = −µεµνλ tr

(
Aµ(x)∂νAλ(x)+ 2i

3
gAµ(x)Aν(x)Aλ(x)

)
. (33)

The gauge group isSU(N). In matrix notation

Aµ = Aaµta Fµν = Faµνta. (34)

The ta ’s are anti-Hermitian matrices in the fundamental representation of the group

[ta, tb] = if abctc tr(tatb) = 1
2δ
ab. (35)

f abc are the structure constants of theSU(N) group.
To see the difference of the non-Abelian case from the Abelian one, consider a general

gauge transformation

Aµ(x)→ U−1

(
Aµ(x)− i

g
∂µ

)
U. (36)

LM is gauge-invariant,LCS is not [2, 3];∫
d3x LCS →

∫
d3x LCS − iµ

g

∫
d3x εµνλ∂µ tr((∂νU)U

−1Aλ)+ 8π2µ

g2
iw (37)

where

w = 1

24π2

∫
d3x εµνλ tr[(U−1∂µU)(U

−1∂νU)(U
−1∂λU)]. (38)
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If we suppose that at‖x‖ =
√
x2

0 + x2→∞, Aµ→ 0 faster than 1
‖x‖ then the second term

in (37) vanishes. The last term, however, coincides inEuclideanspace, with the so-called
homotopy class or winding number, and is equal to 0,±1,±2, . . .. This result follows from
the fact that if

U(x)‖x‖→∞ → 1 (39)

then three-dimensional space can be mapped ontoS3; for SU(2) groupU(x) realizes the
mappingS3 → S3 and the winding number is equal to the degree of mappingS3 to the
SU(2) group. On the classical level, the gauge-transformation (36) results in

SCS → SCS + constant. (40)

It is clear that this constant does not influence the equations of motion or any physical
quantity.

Now, we use the Fadeev–Popov trick to quantize the theory. Formally, the vacuum
functional of the theory is

Z0 = N
∫
DAµ exp i{SM + SCS} (41)

whereN is a normalization factor that will be defined later. Introducing into the formal
equation (41) the identity operator in a general Lorentz covariant gauge

I = 4(A)
∫
Dµ(G)δ(∂µAGµ − f (x)) (42)

whereDµ(G) is the measure of theSU(N) group, and

AGµ = U−1

(
Aµ − i

g
∂µ

)
U U ∈ G. (43)

Equation (42) defines the Fadeev–Popov determinant4(A).
We know that in perturbation theory we can forget about the Gribov ambiguity [18] and

consider only contributions to the functional integral from elements near the identity of the
groupG;

U = 1+ iλ(x)+O(λ2) λ = λata (44)

whereλa(x) is infinitesimally small for allx. This means that in the DFP method we must
consider only small gauge transformations which, by default, belong to the zero homotopy
class for whichw = 0 sinceλ(x) must go to zero when‖x‖ → ∞†. Substituting the
identity operator (42) into the expression (41), we get after the conventional manipulations

Z0 = N�(G)
∫
DAµ(x)DC̄(x)DC(x) exp{i(SM + SCS + Sg)}. (45)

Here�(G) is the infinite group volume, and

Sg =
∫

d3x tr

(−1

2α
(∂µA

µ(x))2+ ∂µC̄a(x)(DµabCb(x))
)

(46)

whereC(x) and C̄(x) are the well known Fadeev–Popov ghosts that are scalar Grassmann
fields, and

Dab
µ = ∂µδab + gf abcAcµ(x). (47)

† In the general case whenU = eiτaλa(x) and‖x‖ → ∞, λ(x) =
√
(λa)2→ 2πn wheren is the winding number.
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Thus, the generating functional of the theory is now given by the expression:

Z[Jµ, η, η̄] = Z−1(0, 0, 0)
∫
DAµ(x)DC̄(x)DC(x) exp

{
i(SM + SCS + Sg)

+i
∫

d3x (J aµ(x)A
µ
a (x)+ η̄a(x)Ca(x)+ C̄a(x)ηa(x))

}
(48)

here

Z(0, 0, 0) = Z(Jµ, η̄, η) |Jµ=η̄=η=0 . (49)

Finally, we note that the action in the generating functional (equation (48)) though
gauge-fixed is still invariant under the special class of the BRST supertransformations [19],
namely:

Aaµ(x)→ Aaµ(x)+ (DµC(x))aε (50)

Ca(x)→ Ca(x)− 1
2f

abcCb(x)Cd(x)ε (51)

C̄a(x)→ C̄a(x)+ 1

α
(∂µA

µa(x))ε (52)

whereε is anx-independent Grassmann parameter(ε2 = 0).
It is very important to stress that the BRST invariance of the CS theory ensures satisfying

all the Ward–Fradkin–Takahishi–Slavnov–Taylor identities [20], and, therefore, the gauge-
invariant renormalizability of the theory [21].

2.1.4. The CSQCD. If one introduces spinor field into the theory to have CSQCD, then
it is straightforward to generalize the generating functional equation (48) to this case. The
resulting expression is

Z[J aµ, η̄, η] = Z−1
0

∏
a

∫
DAaµ(x)Dψ̄(x)Dψ(x) exp

{
i(SCS + SM + Sg + S̃ψ )

+i
∫

d3x (J aµ(x)A
µ
a (x)+ η̄(x)ψ(x)+ ψ̄(x)η(x))

}
. (53)

HereSCS, Sg andSM were defined earlier, equations (3), (4) and (6), and

S̃ψ =
∫

d3x ψ̄i(x)(∂/+ eA/(x)−m)ijψj (x). (54)

i, j = 1, . . . , N above are the colour indices of theSU(N) group in the fundamental
representation. It is straightforward to write down the Feynman propagator of the non-
Abelian gauge field; it will differ from the Abelian one only by the appearence of colour
indices, namely

Dab
µν(x) = δabDµν(x). (55)

We would like to emphasize that starting from the generating functionals for the various
models that have been considered so far, one can construct all the propagators and the
primitive vertices, and thus develop the Feynman rules for perturbation theory. For example,
the Feynman propagator for the scalar field is given as

G(x − y) = i
δ2Z[Jµ, j, j∗]
δj (x)δj ∗(y)

|Jµ=j=j∗=e=0

= 1

(2π)3

∫
d3p

eip(x−y)

p2−m2+ iε
. (56)
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Similarly, we have for the spinor propagator from equation (53)

S(x − y) = (−i)2
δlδrZ

η̄(x)η(y)
|Jµ=η=η̄=e=0

= 1

(2π)3

∫
d3p

eip(x−y)

p/−m . (57)

2.2. The path integral quantization of pure Chern–Simons quantum chromodynamics by the
Batalin–Fradkin–Vilkovisky method

Here, we shall show how to construct the generating functional of the theory of spinors
coupled to a non-Abelian gauge field whose action is given solely by the CS term, i.e. pure
CSQCD using the BFV method. This will have a more complicated constraint structure than
the one with the Maxwell term included. One of the advantages of the BFV quantization
method is that it makes the BRST symmetry of the theory more transparent. We start with
the classical action:

S = SCS + Sψ (58)

whereSCS andSψ are given by equations (3) and (25). The action can be written in a more
transparent form:

SCS = −µ
2

∫
d3x

(
Aa0(x)εijF

ija + εij Ȧia(x)Aja(x)+ g
3
f abcεµνλA

µ
a (x)A

ν
b(x)A

λ
c (x)

)
(59)

Sψ =
∫

d3x (ψ̄(x)(iγ0∂0− iγ · ∇−m)ψ(x)− gAµ(x)ψ̄(x)γ µψ(x)). (60)

The canonical momenta of the theory turn out to be all primary constraints:

πai =
δL
δȦia

= −µ
2
εijA

ja θai ≡ πai +
µ

2
εijA

ja ≈ 0 (61)

πψ = δrL
δψ̇
= iψ† θ3 ≡ πψ − iψ† ≈ 0 (62)

πψ† =
δlL
δψ̇†
= 0 θ4 ≡ πψ† ≈ 0 (63)

πa0 =
δL
δȦa0
= 0 Ga ≡ πa0 ≈ 0. (64)

The standard Poisson brackets are:

{ψ(x), πψ(y)} = {ψ†(x), πψ†(y)} = δ(x− y) (65)

{Aaµ(x), πbν (y)} = gµνδabδ(x− y). (66)

θi (i = 1, 2), θ3 and θ4 are second class constraints, whileGa is first class. The presence
of the second-class constraints motivates one to define the Dirac brackets [22] using these
constraints. These can be worked out easily, and the ones that differ from the Poisson
bracket are:

{ψ(x), ψ†(y)}D = iδ(x− y) (67)

{Aai (x), Abj (y)}D =
−1

µ
δabεij δ(x− y) (68)

{Aai (x), πbj (y)}D = 1
2gij δ

abδ(x− y). (69)
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The Hamiltonian assumes the form

H = H0+ Aa0T a = ψ̄(x)(iγ · ∇+m)ψ(x)−A(x) · J(x)
+Aa0(x)

(
J a0 (x)+

µ

2
εijF

ija + gµ
2
f abcεijA

ib(x)Ajc(x)
)
. (70)

H0 is the Hamiltonian on the constraint surface, andT a is a first-class constraint analogous
to the Gauss’ law constraint in QCD, being the generator of the gauge symmetry.A0

appears here, as is the case in QED and QCD, as a Lagrange multiplier. The first-class
constraintT a can be seen to satisfy the algebra:

{T a(x), T b(y)}D = −gf abcT cδ(x − y) ≈ 0 (71)

{T a(x),H(y)}D = 0. (72)

The BFV quantization method, in attempting to maintain Lorentz covariance and the
unitarity of theS-matrix expands the phase space of the theory by making the Lagrange
multiplier of the theory dynamical, and introducing new (ghost) degrees of freedom whose
statistics are opposite to the first-class constraints of the theory. In our case we will have
two pairs of these ghosts which are Grassmann fields;

(Ca, P̄a) (Pa, C̄a).
Therefore, our canonical variables now become

QA = (Aai , ψ,ψ†, Aa0, Ca,Pa) (73)

PA = (πai , πψ, πψ† , πa0 , P̄a, C̄a). (74)

Generally, the BFV method introduces the so called complete Hamiltonian [16] that enters
into the expression of the generating functional, and is defined as

Hcomp = H0+ {9,�}D. (75)

9 is the gauge fermion of the theory and contains all the gauge degrees of freedom.� is
the BRST charge of the theory, and satisfies:

{�,H}D = 0 (76)

{�,�}D = 0. (77)

Generally,H′, 9 and� are found as expansions in powers of the ghost fields by solving
equations (76) and (77) above. However, in our case, due to the simplicity of the algebra
of the constraints, we getH0 to zeroth order,9 to first order and� to second order in the
ghost fields. Thus

9 = C̄aχa + P̄aAa0 (78)

� = πb0Pb + T bCb − 1
2P̄bf

bcdCdCc (79)

whereχa is a gauge-fixing function

χai = ∂iAai − f a(x). (80)

The vacuum functional of the theory is given now by the expression

Z0 = N
∫
Dµ(Q,P )exp i

{∫
d3x (PAQ̇

A −Hcomp)

}
(81)

wherePA andQA are given in equations (73) and (74), and

Dµ(Q,P ) = DAai DAa0DψDψ̄DπψDπψ†Dπai Dπa0DCaDC̄aDPaDP̄a

×δ
(
πai +

µ

2
εijA

ja
)
δ(πψ − iψ†)δ(πψ†(Ber‖{θl, θm}‖) 1

2 . (82)
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Ber is the superdeterminant, or the Berezinian, which is introduced here due to the presence
of the fermionic degrees of freedom. Integrating over the matter and gauge momenta and
overπa0 , P̄b andPa, we get

Z0 = N
∫
DAµDψDψ̄DCDC̄δ(Ȧa0(x)− ∂iAai (x)+ f a(x))

× exp i

{∫
d3x (Lcl − C̄a(∂µDµabCb))

}
(83)

where

Lcl = iψ̄(∂/−m)ψ − AaµJµa −
µ

2
Aa0εijF

ija − µ
2
εij Ȧ

iaAja − gµ
2
f abcAa0εijA

ibAjc (84)

and

C̄a∂µDµ

abCb = C̄a(∂µ(δab∂µ − f acbAµc ))Cb. (85)

The above expression—upon including external sources—coincides with the generating
functional equation (53) without the Maxwell term.

3. TheS-matrix operator

Although the generating functionals of the theory, equations (10), (29) and (53), contain
all the information of the theory, and can be used to derive the scattering amplitudes, it
is more convenient to either introduce the path integral representation of theS-matrix of
the theory, or to construct theS-matrix operator. The latter is particularly convenient for
the investigation of the imaginary parts of the Green functions, Feynman diagrams and the
scattering matrix elements, or generally speaking, for the investigation of the unitarity of
the theory. We shall first construct theS-matrix operator of the pure CSQED, and then
generalize the results to the other cases. A peculiar property of the pure CSQED is the
absence of real topological photons, although the propagator and its imaginary part exist
(see, for example, equations (20) and (22)). As for the operatorÂµ(x); we note that
canonical quantization in covariant gauges allows one to introduce (as in QED) operators
for the scalar as well as the longitudinal components ofAµ(x), and it can be proven that
due to the canonical commutation relations, the equation for the propagator

Dµν = −i〈T Âµ(x)Âν(y)〉
coincides with the classical equation (13) and they have the same solution, equation (14).
However, in the case of pure CS theory, this topological photon does not contribute to the
physical states of the Hilbert space, which can be defined as usual;∂µÂ

+
µ |phys〉 = 0. Thus,

starting from this result, one can unambigously formulate rules for the construction of any
matrix elements of the different products of this operator. In this sense, one can formulate
some kind of Wick theorem for the operators of the topological CS photon. TheS-matrix
operator for scalar pure CSQED has been constructed in the works [11, 13], and those for
spinor pure CSQED in [14]. Here, we would like to elaborate on the constructions given
in these references.

In pure CSQED, theS-matrix operator formally has the same form as that in 2+ 1
dimensional QED,

Ŝ = T exp{iSint(
ˆ̄ψ, ψ̂, Â)} (86)

here

Sint(
ˆ̄ψ, ψ̂, Â) =

∫
d3x : e( ˆ̄ψγµÂµψ̂) : (87)
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where ‘: :’ means normal ordering, and̂ψ(x) and ˆ̄ψ(x) operators are given as

ψ̂(x) =
∫

d3p

(2π)

√
m

Ep
[b(p)u(p)e−ipx + d†(p)v(p)eipx ] (88)

ˆ̄ψ(x) =
∫

d3p

(2π)

√
m

Ep
[b†(p)ū(p)eipx + d(p)v̄(p)e−ipx ]. (89)

Ep =
√
p2+m2 and b(p) (d(p)) and b†(p) (d†(p)) are respectively the annihilation and

creation operators of particles (antiparticles) satisfying the usual anticommutation relations:

[b(p), b†(p′)]+ = [d(p), d†(p′)]+ = δ(p− p′). (90)

The two-component spinorsu(p), v(p) are, respectively, the positive- and negative-energy
solutions of the free Dirac equation in(2+ 1) dimensions, with the properties:

(p̂ −m)u(p) = (p̂ +m)v(p) = 0 (91)

ū(p)u(p) = −v̄(p)v(p) = 1 (92)

ū(p)v(p) = v̄(p)u(p) = 0 (93)

u(p)ū(p) = p/+m
2m

(94)

v(p)v̄(p) = p/−m
2m

. (95)

Let us next pay our attention to the operatorÂµ: Using its above mentioned properties, we
can formulate the following rules of the matrix elements of its products: (1) The vacuum
expectation value of the products and theT -products of only an even number of the operators
Aµ is nonvanishing, and reduces, respectively, to the sum of the vacuum expectation values
of the product and theT -product of two field operators defined as

〈0|T (Âµ(x)Âν(y))|0〉 = −iDµν(x − y) (96)

〈0|Âµ(x)Âν(y)|0〉 = −iD+µν(x − y)

= − i
∫

d3p

(2π)3

[(
i

µ
εµνλp

λ − α
2
pµ

∂

∂ν

)
δ(p2)

]
θ(p0)e

ip(x−y) (97)

whereDµν(x − y) is given by equation (20). For example, for four operator product we
have:

〈0|T (Âµ(x)Âν(y)Âλ(z)Âδ(u)|0〉 = (−i)2{Dµν(x − y)Dλδ(z − u)
+Dµλ(x − z)Dνδ(y − u)+Dµδ(x − u)Dνλ(y − z)} (98)

and so on. (2) All the matrix elements between physical states of the normal product of
any number of the field operatorsAµ are equal to zero. However, the vacuum expectation
value of the product of the normal products of an equal number of these operators only is
different from zero. For example:

〈0| : Âµ(x)Âν(y) :: Âλ(z)Âδ(u) : |0〉
= (−i)2{D+µλ(x − z)D+νσ (y − u)+D+µσ (x − u)D+νλ(y − z)} (99)

and so on.
Thus, the above rules are the same as the Wick rules except that we take into account

the absence of physical states with free topological photons (other than the vacuum state!).
Therefore, we now make the following observation. All the Feynman rules of the theory are
identical to those of QED given that one replaces the Maxwell propagator in internal lines
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by the CS propagator, and excludes diagrams with external photon lines. In mathematical
language, the above rules mean that the total set of physical states in the total Hilbert
space of the theory does not contain states with real free topological photons†, but only the
physical states of particles and antiparticles. The interesting consequences and applications
of these statements will be considered in section 4.

Consider now the more general case of CSQED, where the propagator is given
by equation (14) and the free-field solutions of the classical equations of motion by
equation (15). This solution consists of two parts: massive physical part and massless
topological part. The canonical quantization of the massive part in theα = 0 gauge can be
carried out, and gives the following representation for the physical massive partÂmµ(x) of

the operatorÂµ ≡ Âmµ + ÂCSµ ‡

Âmµ(x) =
−1

2π

∫
d3p eipxγ

(
eδµ(p)−

i

µγ
εµνρp

ρeνδ(p)

)
δ(p2− µ2γ 2)aδ(p). (100)

TheS-matrix in this case looks formally the same as (87), but the Wick theorem is now the
usual one

〈0|T Âµ(x)Âν(y)|0〉 = −iDµν(x − y)+ : Âµ(x)Âν(y) : (101)

〈0|Âµ(x)Âν(y)|0〉 = −iD+µν(x − y)+ : Âµ(x)Âν(y) : (102)

〈0| : Âµ(x)Âν(y) :: Âλ(z)Âσ (u) : |0〉 = (−i)2{D+µλ(x − z)D+νσ (y − u)
+D+µσ (x − u)D+νλ(y − z)} − i{D+µλ(x − z)〈0| : Âν(y)Âσ (u) : |0〉
+D+µσ (x − u)〈0| : Âν(y)Âλ(z) : |0〉 +D+νλ(y − z)〈0| : Âµ(x)Âσ (u) : |0〉
+D+νσ (y − w)〈0| : Âµ(x)Âλ(z) : |0〉} + 〈0| : Âµ(x)Âν(y)Âλ(z)Âσ (u) : |0〉

(103)

and so on, whereDµν(x − y) is given by equation (14). Only one important exception
exists. Any matrix element of the normal product of the operatorsAµ reduces to that of
the normal product of the massive operatorsAmµ ;

〈f | : Aµ1(x1) . . . Aµn(xn) : |i〉 = 〈f | : Amµ1
(x1) . . . A

m
µn
(xn) : |i〉. (104)

Here, |i〉 and |j〉 are two arbitrary physical states of the total Hilbert space of the theory.
Now the total set of physical states includes, in addition to spinor particles, real massive
photons, but never the topological massless photons.

The generalization of theS-matrix operator to scalar or spinor pure CSQCD is
straightforward now. For the spinor case, the generating functional is given by equation (83).
The S-matrix will have the form

S = T exp

{
i
∫

d3x

[
−µεµνλ tr

(
2i

3
e : Âµ(x)Âν(x)Âλ(x) :

)
− 1

2α
tr(: 2eF̂µν(x)[Â

µ(x), Âν(x)]− + e[Âµ(x), Âν(x)]2
− :)

+e : ∂µ ˆ̄C
a

(x)f abcÂbµ(x)Ĉc(x) : +e : ˆ̄ψ(x)γµÂµ(x)ψ̂(x) :
]}

(105)

† The absence of the real topological free photons can be seen most generally from the fact that the CS term
does not contribute to the free classical Hamiltonian due to its independence of the metric tensorgµν in curved
spacetime.
‡ The details of the canonical quantization, which is very similar to the Gupta–Bluer quantization will be published
in another paper.
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The Wick-type theorem for the operatorsψ̂, ˆ̄ψ, Ĉ, ˆ̄C is as usual. As for thêAaµ operator, we
have the same rules as in the Abelian case, except that the Green function will now have
an additional Kronecker delta in the colour indices.

4. Topological unitarity identities

In this part we are going to investigate the consequences of the peculiar property of the
CS theories, namely the absence of real topological photons in spite of the presence of the
propagator and the many-particle Green function of the gauge field that contribute to the
interaction of the particles quantum mechanically (It is well known that on the classical
level, the CS fields do not contribute to the interaction of the particles!). We will see that
the above property of the CS theories leads, upon imposing the unitarity condition on the
theory, to very interesting topological unitarity identities. These identities have been derived
in the work [14]. Here, we essentially follow the development in this reference, however,
we discuss in more detail how these identities hold in the general case when the Maxwell
term is present along with the CS term.

We consider first the case of pure CSQED. The propagator is given by equation (20),
and theS-matrix operator is given by equation (86). As we have mentioned above, the
absence of the real CS photons means that the complete set of physical vector states in the
total Hilbert space of the theory does not contain these topological particles. To investigate
the consequences of this fact, we introduce theT̂ -matrix:

Ŝ = 1− iT̂ (106)

where Ŝ is the S-matrix operator (the energy–momentum conservingδ-function has been
suppressed). The unitarity of theS-matrix operator leads to the well known relation:

i(T̂ † − T̂ ) = T̂ T̂ † = 2 Im T̂ . (107)

For arbitrary non-diagonal (|i〉 6= |f 〉) on-shell matrix elements between two physical states
of the total Hilbert space, we can write the two equivalent relations

2 Im〈f |T̂ |i〉 = 〈f |T̂ T̂ †|i〉 (108)

and

2 Im〈f |T̂ |i〉 =
∑
n

〈f |T |n〉〈n|T †|i〉 (109)

where in equation (109) we have inserted the complete set of physical states|n〉 which does
not contain the states of the topological photon, but only the states of charged particles. From
equation (109) we see that in a given order of perturbation theory, the Feynman diagrams that
contribute to the imaginary part on the lhs cannot have intermediate on-shell topological
photon lines because|n〉 are physical states. On the other hand, however, investigating
equation (108) in the framework of perturbation theory, we can see that diagrams with
intermediate on-shell photon lines do appear since the vacuum expectation value of the
product of the normal products of equal number of the operatorAµ (see equation (99))
does not vanish as a consequence of the non-vanishing of the imaginary part of the photon
propagator. Therefore, demanding the consistency of equations (108) and (109) leads to
the important conclusion that in a given order of perturbation theory, the gauge-invariant
sum of the imaginary parts of the Feynman diagrams with a given number of intermediate
on-shell photon lines is equal to zero. The vanishing of this sum of the imaginary parts
does not mean the vanishing of the sum of the real part, or the vanishing of the imaginary
part of each distinct diagram. As a rule, the sum of the real parts of such diagrams will
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Figure 1. One-loop Feynman diagrams with intermediate topological photon lines contributing
to e+e− scattering amplitude.

not vanish and will give a contribution to the process involved. Moreover, each diagram
in this sum will be an analytic function of invariant variables. The imaginary part of a
distinct diagram will vanish only if the diagram is gauge-invariant. These arguments will
be demonstrated later when we consider a specific example below.

Now, we illustrate these unitarity identities by an explicit example. Consider the case
of scattering of a fermion–antifermion pair in one-loop order in pure CSQED. TheS-matrix
of this theory is given by equation (86). The gauge-invariant Feynman diagrams with
intermediate CS topological photon lines are shown in figure 1. The analytic expression for
the imaginary part of each of these diagrams is

Aa = 2g4

(2π)3

∫
d3k d3k′

(
δ+(k2)δ+(k′2)δ(p + q − k − k′)Gµλ(k)Gνσ (k

′)

× v̄(q)γ
ν(p/− k/+m)γ µu(p)ū(p′)γ λ(p′/− k/+m)γ σv(q ′)
((p − k)2−m2+ iε)((p′ − k)2−m2+ iε)

)
(110)

Ab = 2g4

(2π)3

∫
d3k d3k′

(
δ+(k2)δ+(k′2)δ(p + q − k − k′)Gµλ(k)Gνσ (k

′)

× v̄(q)γ
ν(k/− q/+m)γ µu(p)ū(p′)γ σ (p′/− k/+m)γ λv(q ′)
((k − q)2−m2+ iε)((p′ − k)2−m2+ iε)

)
. (111)

whereGµν(k) = εµνλk
λ, and δ+(k2) = θ(k0)δ(k

2). For simplicity, we restrict ourselves
to the case of forward scattering in which case the imaginary parts of these diagrams give
their contribution to the total cross section of the process. As was shown in [14], a lengthy
calculation gives (an overall irrelevant multiplicative constant has been suppressed)

Aa = −
∫

d3k δ+(k2)

(
1+ pk

m2
+ qk

pk

)
= −Ab (112)

or

Aa + Ab = 0. (113)

The same result can be obtained in the case of non-forward scattering too. This example
demonstrates the unitarity identities in the one-loop order.

It is not difficult to generalize the unitarity identities to the case when Maxwell-
type terms are present. In such cases, one must divide the total gauge-field propagator
in equation (14) or (55) into two parts (in theα = 0 gauge for example): physical
massive part and topological massless part. The operatorÂµ in the exponent of theS-
matrix in equation (86) can be viewed as the sum of two parts too: the massive physical
(∼ δ(γ 2µ2−k2)), and the massless topological part (∼ δ(k2)). States of the massive photon
will appear now in the total Hilbert space of the theory. So, imposing the unitarity condition
on thisS-matrix in the sense of equations (108) and (109) will lead to the appearence of
the topological unitarity identities in this case too.

For example if we consider the diagrams with two intermediate photon lines in the
one-loop fermion–antifermion scattering, we get the two unitarity identities illustrated
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Figure 2. Diagramatic illustration of the unitarity identities in CSQED.

diagramatically in figure 2 (the lines with× represent the topological part of the gauge-
field propagator). The first identity means that the sum of the four diagrams (which is
gauge-invariant) with one on-shell intermediate topological photon line is zero. The second
identity means the same for the diagrams with two intermediate on-shell topological lines.

The identities developed above can also be shown to hold outside the framework of
perturbation theory. That they should hold in the non-Abelian case as well, could be
demonstrated without too much difficulty.

5. Concluding remarks

In this paper, we have shown that the covariant path integral quantization of the theories
of scalar and spinor fields interacting through the Abelian and non-Abelian pure CS gauge
fields, results in a mathematically ill-defined functional integral, since the pure CS action
in the exponent of the functional integral is not positive definite in Euclidean space. To
define the path integral, it is necessary to introduce into the classical action the Maxwell or
Maxwell-type (in the non-Abelian theory) term that is the only bilinear term in the gauge
field that does not violate the gauge-invariance of the action. This term also guarantees
the gauge-invariant regularization and renormalization of the theory, which then becomes
super-renormalizable [2, 3].

The generating functionals of the models considered were constructed, and seen to be
formally the same as those of QED (or QCD) in 2+ 1 dimensions, with the substitution of
the CS gauge-field propagator for the photon (or gluon) propagator. The CS propagator in
these models is seen to consist of two parts: the first part is the propagator of a real massive
photon (gluon) which contributes to the classical free Hamiltonian, and its states appear in
the Hilbert space of the total set of physical states of the system. The second part is that of
the topological massless photon which does not contribute to the free Hamiltonian, but leads
to additional (in comparison with QED or QCD) interaction between the charged particles.
The general solution for the free gauge field, when constructed in a covariant gauge, was
therefore seen to consist of a massive part, and a massless topological part.

Taking the limitsγ → ∞ andµ → 0 of the propagator and the general solution of
the gauge field (see equations (20)–(23)) after renormalization, we get the propagators and
the general solutions of the gauge field of the pure CSQED and QED in 2+ 1 dimensions,
respectively.

Carrying out the path integral quantization of the pure CSQCD using the Batalin–
Fradkin–Vilkovisky method, we obtained the same generating functional constructed by the
De Witt–Fadeev–Popov method, thus demonstrating the equivalence of the two approaches
of quantization of theories with the CS term.

Unfortunately, a path integral representation of theS-matrix is not available for theories
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with the pure CS field. This is because the ‘in’ and ‘out’ limits of the transverse part of
the pure CS gauge field do not exist. In the general case, when the Maxwell-type term is
included in the action, such a representation can be constructed, and this will depend only
on the ‘in’ and ‘out’ solutions of the massive part of the gauge field. We constructed in
the general case, theS-matrix operator for all the Abelian and non-Abelian models, and
showed that this operator gives the correct expression for all the Feynman diagrams of the
theory, and formally differs from the usual case of QED and QCD in 2+1 dimensions only
by a specific type of Wick theorem for the gauge field.

Starting from thisS-matrix operator, we have shown that the requirement of the unitarity
of the S-matrix leads to topolgical unitarity identities that were derived in [14]. These
identities demand that at each order of perturbation theory, the gauge-invariant sum of the
imaginary parts of the Feynman diagrams with a given number of intermediate on-shell
topological photon lines should vanish. These identities were illustrated by some examples
in the Abelian case. The importance of these identities stems from the fact that they not only
provide additional check of the gauge-invariance of the theory, but also highly facilitate the
perturbative gauge-invariant calculations of Feynman diagrams. It is also possible to get
strong restrictions on the dependence on invariant variables of the gauge-invariant sum of
the real parts of the Feynman diagrams for which the gauge-invariant sum of the imaginary
parts vanishes (on account of the analytic properties of Feynman diagrams in the momentum
space representation).
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